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The scalar spectrum in the viscous-convective subrange 
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A modified design of a fibre optic light probe was used for the measurement of 
turbulent concentration fluctuations and the spectra associated with these. The 
main object was to establish experimentally the nature of the scalar spectrum in 
the viscous-convective subrange. The existence of a spectral region with a ( - 1)- 
power law form supports the uniform straining model proposed by Batchelor 
(1959) for Schmidt numbers (v /D)  much greater than unity. For this range, the 
data do not agree with the cascading process suggested by Pao (1965). 

An additional object was to study further the decay of the concentration 
fluctuations in terms of a measure of the turbulent mixing. More specifically, the 
limitations of applying the isotropic stationary mixing theory of Corrsin (1957, 
1964a) to a shear pipe flow situation and the validity of the earlier data for this 
case (Lee & Brodkey 1964; Brodkey 1966a, b;  and Gegner & Brodkey 1966) 
were investigated. 

1. Introduction 
It is not the purpose of this paper to develop any specific theory, but a brief 

historical sketch will help put the present work in perspective with that which 
has gone before. Furthermore, only those analyses which might be classed as 
intuitive and that give rise to some idea as to the shape of the scalar spectrum, 
will be considered. Thus, we will not discuss the various closure approximations, 
for which one can cite the recent article by Lee (1966) which compares a number 
of these for the scalar field. 

1.1. The scalar spectra 

The turbulent mixing problem was developed in the same manner as turbulent 
motion theory by Obukhov (1949) and Corrsin ( 1 9 5 1 ~ ) .  It was shown that an 
inertial-convective subrange would exist in which the spectrum would have a 

(1) 
- $ region 

where A is a dimensionless constant, e3 is the rate of dissipation of concentration 
fluctuations, e is the turbulent energy dissipation rate, and k is the wave- 
number. The cut-off wave-number for this was estimated to be k, = (e/D3)*. 
Batchelor (1959) pointed out that this should be valid if the Schmidt number is 
near unity, and that for systems with large Schmidt numbers (as in our case), a 
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viscous-convective subrange should exist with a - 1 spectral region. Beyond this, 
in a viscous-diffusive region, a rapid decay should occur. Based on his uniform 
straining model, he obtained for these ranges 

ESP) = - (E,/Y4 exp (DWY),  
where y is the strain and is approximately given by 

= -0*5(e/~)h. (3) 
For k @ (-y/D)B or (e/vD2)i, E,(k) would vary as k-l .  For the high Schmidt 
number systems, the -8 region would still be expected to exist for k less than 

Inertial-convective Viscous-convective 
subrange subrange I 

Log (l&) Log (c/v3$ Log (C/VD2$ 

Log k 

FIGUFLE 1. Theoretical spectra. Nsc = p/p D S 1 ; --, E,(k), Batchelor; 
, E,(lc), Pao; ---- 9 E@). -.-.- 

k, = (4~3)'. More recently Pao (1965) has suggested that a spectral equation 
obtained earlier by Corrsin (19643) for the very low Schmidt number region, 
should also be valid for the high Schmidt number range. The equation is 

E,(k) = n e , d k - ~  exp ( - $nDe-*k*), (4) 

where n is a constant used as 0.59 (Gibson & Schwarz 1963 b ) .  A summary is given 
as figure 1. 

Little experimental work has been done for high Schmidt number conditions, 
where the viscous-convective subrange might be observed. This involves the 
measurement of concentration fluctuations in liquid systems, which has proven 
to be most difficult (Lee & Brodkey 1963; Gibson & Schwarz 1963a; Nye & 
Brodkey 1967). Both the experimental results of Lee & Brodkey (1964) and 
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Gibson & Schwarz (1963 b )  show a flatter than - Q region where the subrange 
would be expected to exist; however, as suggested by Pao (1965) one cannot 
honestly claim to have proven the existence of the region with the data available. 
Thus, neither the uniform straining mechanism nor the suggestion of Pao can be 
said to be proven. It is one object of this work to provide an answer to this 
problem. 

1.2. The decay of the scalarJEuctuations 

With a knowledge of the shape of the scalar spectrum, one can obtain information 
about the scalar fluctuations, since these are an integration of the spectrum over 
all wave-numbers. Corrsin (19516, 1957, 1964a) considered the high Schmidt 
number conditions for a stationary isotropic field (isotropic for both the scalar and 
velocity fluctuations, i.e. neither mean velocity nor mean scalar quantity was 
present, but only fluctuations about zero). The method paralleled the develop- 
ment of the analogous Kkmhn-Howarth equation for the velocity field; how- 
ever, the continuity equation was used as the starting point instead of the motion 
equation. The equation in terms of correlations of the concentration fluctuations 
at  two points in space is 

where g,(r) is the second-order correlation given by 

and ks(r) is the corresponding third-order correlation. cf  is the root-mean-squared 
of the concentration fluctuations, and c is the instantaneous value. In  the limit of 
zero separation of the two points, the equation reduces to 

dc"/dt = - I2Dcf2/h: (7) 

A; = -2/g,"(o). (8) 

where, analogous to the velocity case, the microscale, A,, is defined as 

Under the assumption of constant scalar microscale, an integration of (7) gives 

I, = cf2/ch2 = exp ( - t / T ) ,  ( 9 )  

r = h:/12D. (10) 

where I, is a measure of the turbulent mixing and the time constant is given by 

1, is a very convenient measure of the degree of mixing, since it is unity for no 
mixing and drops to zero when the mixture is uniform. An equivalent form sug- 
gested by Danckwerts (1953) and called the intensity of segregation is 

I, = c'"C( 1 - C),  (11) 

where C is the average concentration fraction of the component being mixed and 
( 1 - C) would be the concentration fraction of the remaining material. 

Since the time rate of change of the concentration fluctuations [as given in (7)] 
is also a concentration dissipation term (analogous to E ) ,  it can be expressed as an 



154 Jumes 0. Nye and Robert 8. Brodkey 

integration of the scalar dissipation spectrum, k2E,(k).  Furthermore, the con- 
centration fluctuation term itself is an integration of the scalar spectrum, thus, 
the microscale in (7) can be re-expressed as 

= 6JOm E , ( k ) d k / J r  k2Es(k)dk.  

Corrsin defined the spectrum by equation ( 1 )  in the region of wave numbers 
bounded by ko, , and k,  [ko, , is the low wave-number limit of the - $ region, and 
k, is the Kolmogorov wave-number given by (s/v3)i] and the k-l segment of ( 2 )  
from kK out to the Batchelor cut-off given by (c/vD2)i. He used this together with 
(10 )  and (12)  to arrive at an expression for the time constant of the scalar decay 
for the high Schmidt number conditions in a stationary isotropic turbulent field 

7 = h,2/12D 21 $[3(5/7@ (L,~/s)+ + (s/v)+ In N,,], (13) 

where L, is the macroscale of mixing, which is defined as the integration of the 
correlation given by ( 6 )  over all separation distances. Corrsin related this to 
ko, by the expression L, = (7~/5)k<l, .  

A similar analysis can be done with the spectrum suggested by Pao and given 
by ( 4 ) .  Paralleling Corrsin’s work and using the spectrum as a -Q region from 
ko,s to k ,  = (s/03)*, one obtains 

which is independent of the diffusivity. 
The combination of the preceeding equations [ ( 9 )  and (13)]  plus equations to 

allow estimations of unknown parameters has been used by Lee & Brodkey 
(1964),  Brodkey (1966u, b )  and Gegner & Brodkey (1966) to predict the decay of 
concentration fluctuations of an injected dye material during mixing in the tur- 
bulent pipe flow of water. A knowledge of the nature of the scalar spectrum 
would lend support to the application of the prediction method to practical 
problems of mixing. Thus the object of this work was primarily directed to the 
measurement of this ‘spectrum. Since the new concentration detection system 
was considerably smaller than the previous one used, more reliable concentration 
fluctuation data could be obtained. Thus, a second object of this work was to 
remeasure the decay of concentration fluctuations along the centre-line during 
the turbulent pipe flow of water, and to check the validity of the earlier data of 
Lee & Brodkey (1964) as well as the applicability of the method of Corrsin to 
the prediction of this data. A pipe flow system was selected because the authors 
wished to investigate the scalar decay in a stationary turbulent field rather than 
the possibly more complex case of scalar decay in a decaying velocity field that 
would be obtained behind a grid in a water tunnel. 

2. Experimental system 
The flow and dye injection systems were the same as previously described by 

Lee & Brodkey (1964). Briefly, the unit consisted of holding tanks, a 7.8 em poly- 
ethylene pipe test section (nominal 3-inch diameter), pump, filter, an axially 
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ocated dye injection tube and associated gravity feed lines, and the measuring 
system. The general layout is shown in figure 2. Further description and figures 
can be found in the reference cited. The conditions of experimentation were the 
same; a centre-line Reynolds number of 50,000 was used. 

Overflow 
Recirculation 

Pump 
Recirculation pipe line 

Reservoir Light in Light out 
tank 

Tank Tank 
Sketch 

of 
Rotameter probe 

I 

FIGURE 2. Equipment. 

Drain 
? 

1 
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There are two points of difference associated with the measurements : the fibre 
optic light probe system and the dye used as the scalar contaminant. The old 
probe was described in detail by Lee & Brodkey (1963) and the newer one by Nye 
& Brodkey (1967). A sketch of the latter is included in figure 2. The probe has two 
fibre glass light conducting lines whose diameters were 0.25 and 0.38mm. The 
light travelled through the larger line, crossed a 0.25 mm gap to the other line, 
which led to a photomultiplier tube measuring system. The new probe has a 
volume of approximately 1.2 x lO-5c.c., which is a reduction of a factor of about 
45 from the previous unit. The new probe was mounted from the side wall of the 
pipe and located at the centre-line. There was no means provided for adjustment 
along the radial direction as had been done in the previous work; thus, only 
centre-line conditions were checked. The new dye had improved light absorption 
characteristics and in addition eliminated the troublesome problem of fibre optic 
staining. The material was surprisingly simple, being Sheaffer’s no. 112 Washable 
Peacock blue ink ( D  = 2.6 x 

A high intensity projection light bulb (Sylvania DLR, 250 watts) was used to 
provide the light for the fibre optic probe. The fluctuating light output from the 
probe was picked up by a RCAIP-21 photomultiplier tube, which with its 
associated circuitry converted the input to a voltage. The average of this was 
measured with a high input impedance electrometer (Keithley 610B). The 
fluctuating signal was passed through a decade isolation amplifier (Keithley 
102B). The r.m.s. was determined with the aid of a 9 see time constant r.m.s. 
meter that was a part of a Linitronic Model 40W Linear Constant-Temperature 

cm2/sec). 
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Hot-Film Anemometer. The signal was also recorded on tape (Ampex Instr. Tape 
748 on an SP-300 recorder); however, in order to obtain better signal-to-noise 
ratios at  the higher wave numbers, a variable filter (Allison 2) was used in some 
cases to cut off the lower frequency high energy fluctuation signals. Thus, the 
entire wave-number range could be recorded at  a higher level and not be lost in 
tape recorder and other noise. The same spectrum analysing units were used as 
before, but an improved method of analysing the data was employed. Details of 
this will be given in the next section when the spectrum results are discussed. 
Other details and figures, as well as an evaluation of the modified measuring 
system can be found in the references cited. 

3. The scalar spectra 
3.1. Experimental results 

The one-dimensional scalar spectra were measured at 4,24  and 36 pipe diameters 
downstream from the dye injection point. The spectra corrected for finite probe 
size are shown in figure 3, as well as the uncorrected spectrum a t  36 pipe diameters 
so as to illustrate the magnitude of the correction. The corrections were based on 
the work of Uberoi & Kovasznay (1951), who derived a spectrum correction 
factor, which was a function of Ice, where t' is a linear dimension. Although the 
correction was derived for a hot-wire probe sensitive to temperature change, it 
should be reasonable for our cylindrical probe provided the correct value of t' is 
chosen. For this, the average of the diagonals of the inscribed and superscribed 
prisms as developed by Rosenwseig (1959) was used. The degree of correction 
shown in figure 3 was large only a t  high wave-numbers and even if neglected 
would not change the conclusions about the existence of a - 1 spectral region. 

A better means of correcting the data a t  the higher wave-numbers could be 
developed by rederivation of the Uberoi & Kovasznay approach for a scalar in a 
finite volume. However, since their correction, which is approximate for our case, 
did not alter the conclusion about the - 1 region, we did not feel that additional 
effort should be spent on this aspect of the problem. If further work is to be done, 
it should be directed toward the development of smaller probes or completely 
different methods of measurement, so that corrections will not be required. 

It should be pointed out that Rosensweig has developed a spectrum correction 
factor for concentration fluctuations in a light beam. The approach was totally 
different from that of Uberoi & Kovasznay, and suggested that no correction was 
needed below a wave-number of 100 cm-l and would be very large at 250 cm-1. 
The basis for his correction is not as convincing as that for the Uberoi & 
Kovasznay work, and so was not used to correct the present data. 

Finally, the possible effect of light scattering should be mentioned. First and 
foremost the probe was fixed in geometry and calibrated with known concentra- 
tions of dye. The flow system was continually filtered to eliminate solids such as 
fine dust, etc., thus the only scattering source would be the water and dye mole- 
cules. The effect of scattering would be in the same direction as absorption, i.e. 
the larger molecules would decrease the light level by scattering light out of the 
volume or by the main cause, absorption. In  either event, the effect was accounted 
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for by keeping the dye concentration low so that Beer’s law was obeyed and by 
the calibration using known dye concentrations. The spectra as measured were 
normalized so that their integrals would give cI2, the mean squared concentration 
fluctuation, according to the relation (Hinze 1959) 

m 

d2 = 1 $, (k)dk .  (15) 
0 

Thus as one progresses down the pipe, the spectra are decaying. 

10-1 1 10 10’ 103 
k (em-’) 

FIGURE 3. Corrected and uncorrected one-dimensional scalar spectra. 

The spectra were measured on a Panoramic spectrum analyser system. A low 
frequency unit was used for signals below 150 Hz, with a 1 Hz bandwidth. Be- 
tween 150 and 20,00OHz, a sonic system was used in conjunction with a 1OHz 
bandwidth. In each ca,se a power Spectral Density Analyser was used, which 
stored the signal on an analogue integration unit (capacitor) for a period of 30 see; 
the charge level was also recorded. The fluctuation signal on the tape recorded 
was long enough to allow at least five 30 sec periods to be studied; thus, each point 
of the spectrum represents an average of at  least 2;min of sampling time. The 
five peaks varied about 6 % about the average value used in figure 3. It is the 
shape of the spectra lines that is of interest here and not their absolute magnitude. 
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Inadequate response of the analysing equipment below 2Hz and errors intro- 
duced because of probe resolution at the high frequency end will of course cause 
errors in the shape of the lines at these extremes. In  the central region the shape 
will be correct, but the actual level may be wrong because of the integration of a 
curve with the extremes poorly defined [in the use of (15)]. This latter error should 
not be large since the spectra curves clearly flattened out a t  the low wave-number 
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FIGURE 4. Three-dimensional scalar spectra and one-dimensional velocity spectrum. 
-, E J k )  (yo conc.)a/cm; ......, $ ( k )  cms/sec2; ----, -1.  

end, which corresponded roughly to the size of the system, and could be assumed 
flat to zero. At the high wave-number end, the difference between the observed 
and assuming a continued - 1  region was not evaluated except to note that 
the contribution of this region to the integral of (1 5 )  is small. Finally, an estimate 
of the effect of the correction shown in figure 3 was made. The difference in area 
amounted to about 7Q %. 

A simple differential relation exists between the one-dimensional and three- 
dimensional spectrum for isotropic turbulence (Hinze 1959) : 

It is a simple exercise to show that in any region where E,(k) has a constant power 
dependency on k, $,(k) will have the same power dependency on k. Thus one would 
not expect much difference in the shapes of EJk)  and $ J k ) ;  nevertheless, E,(k) 
was determined from (16) for each case and are presented in figure 4. The only 

E,(k) = - k[d$,(k)/dkI. (16) 
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justification for the use of (16) would be the tendency towards isotropic condi- 
tions at  the centreline, although in contrast to a number of claims to the contrary 
in the literature, the central region is most certainly not isotropic. The various 
theories discussed in the first section are in terms of the three-dimensional func- 
tion, E,(k) ,  and thus it is convenient to use figure 4. A comparison of figures 3 and 
4 show the same general shape between E,(k) and $,(k), with E,(k) dropping more 
slowly than $,(k) in the rapidly decreasing regions. 

3.2. Discussion of spectra results 

For the spectrum at 36 pipe diameters as shown in figure 4, a very distinct k-1 
region was observed as predicted by Batchelor’s (1959) theory for the high 
Schmidt number range. For the four pipe diameters curve, a continuous decay 
was observed, and no segment could be said to have a - 1 slope. At 24 diameters, 
a - 1 region of slightly less than one decade was obtained, while at 36 diameters, 
the spectrum showed about 14 decades. The - 1 region would normally be ex- 
pected to follow a -#  segment; however, for this to exist there must be a cor- 
responding region in the velocity spectrum. This spectrum as shown on figure 4 
had no such region due to a lack of an inertial subrange and even a lack of isotropic 
conditions in the pipe flow shear field. For this system, Lee & Brodkey (1964) 
determined k ,  as 62 cm-I from velocity spectrum measurements. Experiment- 
ally, the - $ region ends at about 0-05kK, which would correspond to a k of about 
3.2 cm-I for the present system. The scale of such a wave-number range is about 
0.3 em and is in the range of the flow system dimensions (a radius of about 4 cm); 
thus, the conditions of an inertial subrange would not be expected to exist, since 
such eddies would most certainly obtain a reasonable part of the energy from the 
gross system. It should be emphasized that, as Batchelor pointed out, the exist- 
ence of the - 1 region does not depend on the existence of the -$ inertial sub- 
range. However, the estimate of the strain as given by (3) would probably be 
incorrect. 

The general shape of the spectrum at 36 pipe diameters from the injector was 
in agreement with the predictions of Batchelor (1959); however, the position of 
the spectrum with respect to the expected wave-number was displaced. Batchelor 
suggested that the - 1 region should follow the - Q segment and that the change- 
over point would be around k,. More recent analysis and data indicate the end of 
the - $ inertial subrange of the velocity spectrum to occur about O.05kK. Thus, 
one might modify Batchelor’s change-over prediction somewhat. The present 
results support this in that the - 1 region started at  about 6 cm-l, which is 0. lk,, 
and is in good agreement with the expected end of the - Q segment had it existed. 
The - 1 region of the spectrum ended much sooner than predicted by Batchelor’s 
theory. This was attributed to the probe response rather than to any deficiency 
in the theory. The probe did not give a true picture of the eddies in the very high 
wave-number region where they would be much smaller than the probe itself. 

Pao’s theory as given by (4) and based on the idea of a scalar spectral cascading 
rate dependent only on B and k, predicts a - 3  region throughout the wave- 
numbers encountered in this work. This was not observed, so that one must 
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question the applicability of (4) to the high Schmidt number range. This does not 
detract from its possible validity at much lower Schmidt or Prandtl numbers. 

In the limit of zero diffusivity (infinite Schmidt number) there is no mixing as 
measured by a decrease in the concentration fluctuations. For these conditions, 
the time constant obtained from Corrsin’s analysis, which uses the - Q and - 1 
regions as given by (1) and ( 2 ) ,  is infinite. This result allows no decrease in c‘ as is 
logically correct. In  contrast, the result obtained from the extended - Q region 
suggested by Pao’s equation (4) is independent of the diffusivity and gives finite 
mixingin the limit. Actually, (14) is identical to the equation obtained by Corrsin 
(1957,1964~) for the case where theschmidtnumberisunity, whichagainsuggests 
that Pao’s analysis is not valid for the high Schmidt number range. 

4. The decay of the scalar fluctuations along the centre-line 
Lee & Brodkey (1964) measured the mean concentration profiles and found 

them to have a bell shape which spread progressively toward the wall with de- 
creasing height, as in a jet. Since the pipe wall was impermeable, the profiles 
became flattened as the mean concentration profile approached the final uniform 
concentration at the downstream end. The intensity of the concentration 
fluctuations was measured simultaneously with the mean concentration profiles. 
Examples of both profiles can be found in the reference cited and in the recent 
review article by Brodkey ( 1 9 6 6 ~ ) .  The intensity of concentration fluctuations 
remained highest along the centre-line and thus was used by Lee & Brodkey as an 
upper bound for the decay of intensity in the whole region of the pipe. Later, 
Gegner & Brodkey (1966) used Lee’s data to establish the mixing characteristics 
at  all radial positions rather than just at  the centre-line. The work reported here 
is restricted to the centre-line and was obtained to test the validity of the earlier 
data. In  addition, the new data could be used for a better test of applying the 
isotropic stationary mixing theory of Corrsin (1957, 1 9 6 4 ~ )  to a shear pipe flow 
situation. It should be emphasized that if a reasonable check is obtained it does 
not imply that the flow is isotropic but rather constitutes a use of isotropic theory, 
not a proof. 

The decay of the concentration fluctuations along the centre-line of the pipe is 
quite rapid and is a result of two contributing factors; the decay due to mixing is 
superimposed on the decay of the mean as a result of the spread of the injected 
material away from the centre-line. Since it is the true decay due to mixing, in the 
absence of decay of the mean that is desired, the ‘intensity of segregation’ as first 
defined by Danckwerts (1953) was calculated from the data in exactly the same 
manner as suggested by Lee & Brodkey (1964). Figure 5 shows the present experi- 
mental results and the results of Lee & Brodkey (1964) as corrected by Brodkey 
(1966b). Although the two mixing systems were ident(ica1, the probe used by Lee 
& Brodkey was larger and apparently was not adequately sensitive to the small- 
scale fluctuations. The new decay does not follow an exact straight line, and as 
pointed out by Gegner & Brodkey (1966)’ the least-squares fit they used is really 
only an average value. I n  theirs and more pronounced in the present case, the 
experimentally observed slope of the decay curve increased as one moved away 
from the injector. 
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The distance decay of figure 5 is also shown as a time decay. This is done by 
using the length travelled by a blob of fluid divided by the local mean velocity, 
which in this case is the maximum velocity at the centre-line; i.e. 

For the present experimental results, the time constant of the decay is about 
1.7 sec for the initial period, and decreases to about 0.8 sec far from the injector. 
The corresponding results for the older data are 1.1 and 0.8 see. The least mean 
squares line for the older data as obtained by Gegner & Brodkey (1966) corre- 
sponded to a time constant of 1-03 sec, a result which is quite close to that obtained 

Distance in pipe diameters 

FIGURE 5 .  Decay of the intensity of segregation. 

for the present data but clearly not as meaningful. For these same conditions, the 
time constant estimated from (13) by Gegner & Brodkey was 0.93 see. The value 
predicted is still quite close to that experimentally observed but clearly not 
constant as implied from the theory. Nevertheless, the theory is adequate for a 
reasonable estimation of the time constant of mixing. 

The fact that the decay curve is not linear warrants further comment. Equa- 
tions (12) and (13) establish the dependence of the time constant on the spectrum 
measurements presented in the previous section. First, it is clear that the integra- 
tions involved in developing Corrsin’s theory have a smoothing effect so that 
information about the details of spectrum shape are lost. The fact that the experi- 
mental spectra do not have a - 5 region does not appear important for the estima- 
tion. Apparently the area under the theoretical curve used by Corrsin and the 
experimental curve are close so that the comparison is good. More important, 
however, is the expected shape of the decay curve as implied from the actual 
spectra measurements. From figure 4, one can see that the spectra have not 
reached a steady state as far as their shape is concerned, and thus by (12) the 

11 Fluid Mech. 29 
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microscale cannot be constant. The level of the spectrum is not important, since 
any constant would cancel out, but the position with respect to the wave-number 
is. From figure 4, spectra gradually shift to the right as the steady state far down 
the pipe is approached. As the shift occurs the values of 

lom k2 E,(k) dE 

would be larger with respect to 
r m  

and cause a decrease in the microscale and hence in the value of the time constant. 
Thus, as observed, one would expect an increasing slope of the decay curve as the 
steady state spectrum is approached. 

As pointed out on several previous occasions, the macroscale of mixing (LJ,  
which is key in (13), has never been directly measured. Indirect estimates of this 
are used as described by Gegner & Brodkey. Although the equipment is not as 
yet available, the author hopes to be able to make autocorrelations of the 
recorded turbulent concentration fluctuation data at the three measuring points. 
In  this manner a direct measurement of L, could be obtained, and used to check 
the reliability of the currently used estimates of this. 

5. Conclusions 
The concentration spectrum has a k-l region that in the present work extended 

for 1 i  decades. Its position with respect to wave-number was such that it began 
shortly after the k-3 region should have ended, if it had existed in our experi- 
ments. Thus, most of the details of Batchelor’s theory are confirmed. The con- 
centration spectra extended far beyond the velocity spectrum as predicted and 
reported earlier by Lee & Brodkey. The concentration spectrum cut-off after the 
- 1 region occurred before it was expected to do so, but this is attributed to 
limited probe response rather than to a deficiency in Batchelor’s theory. A rough 
estimate based on decay measurements indicate that the cut-off was in accord 
with the theory, but this could not be checked with the present experimental 
probe system. A - 3 region did not exist over the wave-numbers investigated as 
predicted by Pao’s theory. 

The size of the probe clearly affects the results of the decay and spectrum 
measurements. Probe correction are reported in more detail by Nye & Brodkey 
(1967) and show that these should be small for the decay results of the present 
work; however, as indicated above, a high wave-number attenuation occurred in 
the spectrum measurements. 

The decay of the intensity of segregation follows roughly the exponential form 
as predicted by Corrsin. However, since the microscale of mixing was changing 
as the spectrum approached a steady state, some curvature was observed in the 
decay curve as would be expected. Corrsin’s analysis was based on the steady 
state that was never reached in these experiments. Nevertheless, the time 
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constant as predicted by the theory is quite close to the range observed and pro- 
vides a means of estimating turbulent mixing. 
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